

2D LOCAL EXTERIOR SOUND FIELD REPRODUCTION USING AN ADDITION THEOREM BASED ON CIRCULAR HARMONIC EXPANSION

Yi Ren and Yoichi Haneda The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

BACKGROUND

Sound field reproduction

- 3D audio, immersive audio
- A closed boundary divides a space into two (Kirchhoff-Helmholtz integral equation)
- · Either interior or exterior sound field can be reproduced

EXTERIOR SOUND FIELD REPROUDCTION

- Examples: Focused Source Reproduction (FSR), radiation control
- Compact loudspeaker arrays
 - ➤ Difficult to achieve a high performance
- · We proposed array geometries for FSR (Ren+, 2018; 2020).
 - Expecting further improvements

CONCEPT

Controlling the whole exterior area was difficult.

Performance can be improved with smaller areas?

Try focusing on several local areas of the exterior sound field.

MULTIZONE REPRODUCTION

For interior sound field reproduction

- Conventional: whole area inside blue boundary
- Multizone: local areas inside red boundary
- Methods: pressure-matching; mode-matching (based on additional theorem)

(Wu+, 2010)

Improves performance at local areas

CONTRIBUTIONS OF THE STUDY

- A multizone reproduction methods for exterior sound field.
- · Wave domain process based on circular harmonic expansion.

• Conv: interior field \rightarrow interior field (Bessel \rightarrow Bessel)

Bessel: arriving wave

• Prop: exterior field → interior field

 $(Hankel \rightarrow Bessel)$

Hankel: radiating wave

- Discussions on limitations.
- Numerical simulations and experiments on FSR.

MATHEMATICAL MODEL

- Primary and secondary sources inside blue boundary
 - Sound field outside the boundary can be reproduced.
- Conventional: control region is the global exterior field.
- Proposal: We set local areas (red circles); control regions are the interior field of them.

CONVENTIONAL METHOD (CIRCULAR HARMONIC EXPANSION BASED)

• The primary sound field (target field)

$$p(\mathbf{r},\omega) = \sum_{\nu=-\infty}^{\infty} \alpha_{\nu} H_{\nu}^{(2)}(kr) e^{j\nu\phi},$$

• The secondary sound field (reproduced field)

$$\hat{p}(\mathbf{r},\omega) = \sum_{l=1}^{2} G(\mathbf{r}|\mathbf{r}_{l},\omega)d_{l}$$

$$\hat{p}(\mathbf{r},\omega) = \sum_{\mu=-\infty}^{\infty} \xi_{\mu}(\mathbf{d}) H_{\mu}^{(2)}(k\mathbf{r}) e^{j\mu\phi},$$

Using the orthogonality of the expansion basis

$$\xi_{\nu}(\boldsymbol{d}) = \alpha_{\nu}$$

*For a circular loudspeaker array, d can be derived easily with $\xi_{\nu}(d)$.

LOCAL SOUND FIELD REPRODUCTION

• The primary sound field of (the ι -th) local area

$$p(\mathbf{r}_{(\iota)}) = \sum_{\nu = -\infty} \alpha_{\nu,(\iota)} J_{\nu}(k r_{(\iota)}) e^{j\nu\phi_{(\iota)}},$$

• The secondary field was a series of Hankel function

$$\hat{p}(\mathbf{r},\omega) = \sum_{\mu=-\infty}^{\infty} \xi_{\mu}(\mathbf{d}) H_{\mu}^{(2)}(kr) e^{j\mu\phi}$$

- · A Hankel-Bessel transformation required.
- Graf's addition theorem:

$$H_{\mu}^{(2)}(kr)e^{j\mu\phi} = \sum_{\nu=-\infty}^{\infty} H_{\mu-\nu}^{(2)}(kD_{(\iota)})e^{j(\mu-\nu)\Phi_{(\iota)}} J_{\nu}(kr_{(\iota)})e^{j\nu\phi_{(\iota)}} T_{\nu,\mu,(\iota)}$$

LOCAL SOUND FIELD REPRODUCTION UE

• The secondary sound field of the local area

$$\hat{p}(\mathbf{r}) = \sum_{\nu,\mu,(\iota)} T_{\nu,\mu,(\iota)} \xi_{\mu}(\mathbf{d}) J_{\nu}(kr_{(\iota)}) e^{j\nu\phi_{(\iota)}}$$

• Using the orthogonality, we derive

$$\alpha_{\nu,(\iota)} = \sum_{\mu=-\infty}^{\infty} T_{\nu,\mu,(\iota)} \xi_{\mu}(\boldsymbol{d})$$

Finally, to control all local areas at the same time, the solution can be obtained by a least-squares method.

LIMITATIONS

Area size

- Determined by truncation order
- Maximum radius $R_{(\iota)}$: $N_{(\iota)} \geq \left\lceil \frac{ekR_{(\iota)}}{2} \right\rceil$ (Kennedy+, 2007)
- Number of loudspeakers $L: \sum_{i} N_{(i)} \leq M \leq \left\lfloor \frac{L-1}{2} \right\rfloor$ (well-conditioned)

Irreproducible sound fields

- · Both primary and secondary sources are outside the local area.
- The local area is not fully-surrounded by the secondary sources.
 - ➤ The target field the opposite direction of the secondary sources is difficult to be reproduced.

NUMERICAL SIMULATION: LOCAL SOUND FIELD REPRODUCTION

- Target source (focused source)
 - 1000 Hz omnidirectional source
 - Location: $(0.5 \text{ m}, \frac{\pi}{2})$
- Secondary source (white circle)
 - Rigid circular loudspeaker array
 - · Radius: 0.15 m; 30 loudspeakers
- Truncation order (total): M = 14
- Two local areas
 - Centers: $(1 \text{ m}, 0), (1 \text{ m}, \pi/2)$
 - Truncation orders: $N_{(1)} = 3$, $N_{(2)} = 5$
 - ≻Area radii: 12 cm, 20 cm

Control region: Conv outside blue circle Prop inside red circle

NUMERICAL SIMULATION: MULTIZONE REPRODUCTION

• Three sound fields / local areas

1.
$$\left(1 \text{ m}, \frac{\pi}{2}\right)$$

- Focused source
- 2. (1 m, 0)
 - Dark / Quiet zone
- 3. $(1 \text{ m}, -\frac{\pi}{2})$
 - Sound field of 6 random sources
- Truncation orders: $N_{(i)} = 4$
- ➤ Area radii: 16 cm

NUMERICAL SIMULATION: MULTIZONE REPRODUCTION

RESULTS

EXPERIMENTS

- Local sound field reproduction
 - Same target source as the simulation
- Secondary source
 - Rigid circular loudspeaker array
 - · Radius: 0.15 m; 15 loudspeakers
 - Height: 0.572 m
- •One local area at $(1 \text{ m}, \pi/2)$
- Sound field measurement
 - Horizontal 0.94 \times 0.1 m² sound field
 - Coordinates: $x \in [-0.47 \text{ m}, 0.47 \text{ m}], y \in [0.4 \text{ m}, 1.4 \text{ m}]$
 - Impulse responses measured in 0.02 m grids

SUMMARY

- •In this study, we proposed a two-dimensional local exterior sound field reproduction method based on circular harmonic expansion.
- •By applying the additional theorem, local interior areas of the global exterior field can be controlled.
- •Simulation and experiment results show the method is valid for local sound field reproduction and multizone reproduction.
- •2.5D methods and reverberation-considered methods are considered as future works.

THANKS FOR LISTENING