

Beamforming using two rigid circular loudspeaker arrays: Numerical simulations and experiments

Yi Ren and Yoichi Haneda
The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
ren.yi@uec.ac.jp

Introduction

- Beamforming
 - Well studied & widely used on microphone array, antenna, and loudspeaker array.
- Application with Loudspeaker Array
 - Personal Audio
 - Broadcasting etc.

Introduction

Two Circular Loudspeaker Arrays (2CLA)

Rigid Baffles

Our previous study:

Yi Ren and Yoichi Haneda, "Two-dimensional exterior sound field reproduction using two rigid circular loudspeaker arrays," *The Journal of the Acoustical Society of America*, 148(4), pp. 2236–2247, 2020.

- Sound field reproduction using 2CLA
- Investigations on array shape (radius, distance, etc.)

Introduction

This work:

Discuss the 2CLA model in beamforming

(2D field)

- beam pattern, directivity index, beam width, and side lobe level in comparisons with CLA
- performance in different look directions
- effect on array radius and distance
- 3D field experiments in an anechoic chamber

Beamforming Method

MVDR beamformer (frequency domain)

- one constraint point at the look direction.
- regularization for suppressing maximum filter gain under 0 dB

$$\mathbf{w} = \frac{\mathbf{R}^{-1}\mathbf{C}^{H}}{\mathbf{C}\mathbf{R}^{-1}\mathbf{C}^{H}}\mathbf{f}$$

where $\mathbf{R} = \mathbf{G}^{H}\mathbf{G} + \lambda \mathbf{I}$, λ : regularization parameter;

 $\mathbf{w} \in \mathbb{C}^{L \times 1}$: filter, L: number of loudspeakers;

 $\mathbf{C} \in \mathbb{C}^{M_{\mathbf{C}} \times L}$: transfer functions of constraint points, $\mathbf{f} \in \mathbb{C}^{M_{\mathbf{C}} \times 1}$: constraint value of constraint points, $M_{\mathbf{S}}$: number of constraint point;

 $\mathbf{G} \in \mathbb{C}^{M_{\mathrm{S}} \times L}$: transfer functions of suppression points, M_{C} : number of suppression point;

Filter Design

- The constraint point and suppression points were on a circle with radius of 2 m.
- Number of suppression points: $M_s = 143$
- Constraint value: $\mathbf{f} = 1/(4\pi \times 2)$ distance attenuation

Performance

- Directivity Patterns
 - Normalized to maximum of 0 dB
- Directivity Index (DI)

DI(
$$\omega$$
) [dB] = $10 \log_{10} \frac{2\pi \|P_{\varphi}(\omega)\|^2}{\int_0^{2\pi} \|P_{\varphi}(\omega)\|^2 d\phi}$

• The power of the look direction

- Beam Width (BW)
 - Half power (-3 dB) beam width of the main lobe
 - The narrowness of the main beam
- Side Lobe Level (SLL)
 - The maximum level of the side lobe
 - Relative to the main lobe

I. Comparison with CLA

- Numerical simulations comparing 2CLA to CLA
- Number of loudspeakers: L = 30
- 2CLA 🜟
 - Radii: $r_{0,1} = r_{0,2} = r = 0.15 \text{ m}$
 - Distance between centers: $r_{12} = 0.5 \text{ m}$
- CLA

• Radius: $r_0 = r = 0.15 \text{ m}$

CLA₂

- Radius: $r_0 = 2r = 0.3 \text{ m}$
- Same loudspeaker distance as 2CLA

Directivity Pattern

500, 1000, 2000 Hz: Performance $2CLA \approx CLA_2 > CLA_1$

> 4000 Hz: Aliasing on 2CLA and CLA₂

Below 2000 Hz: 2CLA outperforms CLA₁ on DI and BW, no obvious difference on SLL

Above 2000 Hz: 2CLA and CLA₂ get high SLL (because of aliasing)

SLL

DI

II. Direction dependence

• Look direction ϕ

• From 0° to 90°

Same 2CLA model

Below 2000 Hz: little direction dependence

Above 2400 Hz: Look direction $\varphi \to 90^\circ$ Narrower beam with high SLL

III. Radius and distance factor

- Two factors of 2CLA:
 - radius *r*
 - distance r_{12}

In our previous study:

Yi Ren and Yoichi Haneda, "How the distance and radius of two circular loudspeaker arrays affect sound field reproduction and directivity controls," in *Proc. 23rd International Congress on Acoustics*, 2019.

The performance of 2CLA is highly related to the two factors.

Here, we made a more detailed investigation: $r \in \{0.05, 0.1, 0.15, \dots, 0.95\}, r_{12} \in \{r + 0.05, r + 0.1, \dots, 1\}$

DI

 $\bigcirc\bigcirc$

small radius short distance

small radius long distance

large radius long distance

BW

For DI and BW:

SLL

 $\varphi=0^\circ$: large radius causes high SLL (aliasing) $\varphi=90^\circ$: large inter-array space causes high SLL

IV. Experiment in 3D field

Two r = 0.15 m cylindrical loudspeaker arrays, height 0.576 m

Number of loudspeaker: 15×2

Distance $r_{12} = 0.5 \text{ m}$

Anechoic chamber

- 48 microphones on an 120° curve with a radius of 1.5 m
- Rotated and measured three times
- → a full circle
- Calibrated and normalized

Experimental results (EXPT) \approx theoretical results (THEO)

Proposed method works for cylindrical arrays in 3D fields.

Conclusion

- A detailed investigation on MVDR beamforming using a 2CLA model
- Numerical simulation results:
 - 2CLA outperform a same-sized CLA at low frequencies but with a higher risk of aliasing.
 - No obvious look-direction dependence at low frequencies.
 - A large radius factor can lead to aliasing.
- Experiment results:
 - Proposed method can be implemented in 3D sound fields.

Thanks for listening!

